ENGINEERING

TECHNOLOGY TO RECREATE ARTWORKS

Artworks dating back hundreds of years have been lost, stolen, destroyed, or are too fragile, heavy or integral to their location to be moved anywhere else. Madrid-based Factum Arte is using state-of-the-art technology and manufacturing techniques to ‘re-materialise’ replicas of famous pieces for modern audiences to enjoy or so that they can be housed in the location for which they were intended. Stuart Nathan spoke to founder, Adam Lowe, about the company’s work.

Did you know?

- Only a small percentage of the world’s art is recorded in high resolution, preventing it from being lost forever if destroyed, stolen or deteriorated.
- Modern technologies such as scanning and 3D printing are being used to produce copies of priceless artworks.
- Engineers and artists are also using such techniques to restore paintings and even discover if an artwork is genuine.

The Tomb of Cardinal Tavera, made by Factum Foundation for the Spanish Gallery in Bishop Auckland. The original marble work by Alonso Berruguete was recorded in high resolution in the Hospital Tavera in Toledo, Casa Ducal de Medinaceli in collaboration with Fundación Marina Abramović, Anish Kapoor, artist Adam Lowe. Lowe prefers to call his team’s work ‘re-materialisations’, rather than replicas or copies, and they are only one part of the company’s output. Factum Arte uses state-of-the-art techniques to scan and photograph works of art, often revealing details that the human eye cannot see, creating a digital record of the artwork that can be preserved in case of the original deteriorating or even being destroyed. “Only a small fraction of the world’s art heritage is recorded, and this poses a huge risk of catastrophic loss to society and scholarship,” Lowe says. Variations of these techniques, using archive photography and scans of other works, can even allow artwork that no longer exists to be reverse-engineered and ‘re-materialised’ using techniques including additive manufacturing, CNC machining (cutting into a material), and colour printing.

It’s not just museums like the Spanish Gallery that benefit from Factum Arte’s work. The organisation has made new versions of artworks such as Paolo Veronese’s vast canvas ‘The Wedding at Cana’, the original, which was stolen from Venice by Napoleon’s troops, hangs opposite the Mona Lisa in the Louvre and the re-materialisation is now in the location for which Veronese painted it – the San Giorgio Monastery in Venice – allowing it to be seen in its original context. Factum Arte has also reconstructed Caravaggio’s ‘Nativity’, which was stolen from Sicily in 1969 and is believed to have been destroyed by the Mafia, now restored to the location where the original was cut from its frame, one of Vincent Van Gogh’s seven sunflower paintings, destroyed in the US bombing of Japan in the Second World War; and Graham Sutherland’s portrait of Sir Winston Churchill, painted for his 80th birthday, which Churchill hated so much that his wife had it burned to ashes.

Factum Arte’s team working on the facsimile of Paul Preaching at Athens, one of the Raphael Cartoons, for the ‘The Credit Suisse Exhibition: Raphael’ at the National Gallery in London © Oak Taylor-Smith for Factum Foundation.
In 2018, Factum Arte recreated Vincent Van Gogh’s ‘Five Sunflowers in a Vase, destroyed in 1945, for Mystery of the Lost Paintings, a programme by Anton van Dyck at the National Gallery in London and mapping its brushstrokes over the few surviving photographic references of the destroyed painting, the company’s 3D department could recreate the surface of the lost work.

Factum Arte uses a variety of techniques to make artworks. Some are drawn from the latest developments in manufacturing technology, while others are not even used in industry yet. They range from casting to advanced milling and include several types of 3D printing. While some of these technologies are used by contemporary artists to make objects, others are more often in use for re-materialising existing or lost art.

Perhaps the most striking example is using 3D printing to make objects that most people might consider to be not three-dimensional at all: paintings. The texture of the surface on which the original artist painted can have an influence on the composition: knots and grain in wood panels could direct the artist on how to place elements of the picture. Some artists’ techniques create characteristic 3D texture to their works: both Rembrandt and Van Gogh used very thick paint that they almost sculpted away. Designed as a highly effective when printing an image by an artist for whom dark colours are particularly important, such as Joshua Reynolds who often printed his subjects in rich dark clothing.

Another benefit of overprinting in this way is that it is very well suited to working on textured surfaces with micron level detail. To ensure that the ink lands on precisely the right position on the surface, a version of the Lucida texture map is first printed onto a clear acetate sheet, which is used to register the printer – that is, to position the printing head to a high precision – before replacing the clear acetate with the final printed version. Factum uses industrial routing machines controlled by a combination of commercial and in-house software. This technique was used to make replicas of the medieval Mappa Mundi, owned by Hereford Cathedral: the original map was drawn onto a single sheet of calf-skin vellum, which has, over seven centuries, warped and buckled. Incredibly precious, the original map is displayed behind glass that is only removed every other year. One facsimile was routed from plaster and left unprinted so that blind and partially sighted people can feel it to get an impression of what is achievable using elevated printing. Factum uses industrial routing machines controlled by a combination of commercial and in-house software.

In some cases, rather than 3D-printing a textured substrate, the surface to be printed is made by routing, this is particularly useful when the surface to be printed or the overhead limit of what is achievable is too big to be achieved using elevated printing. Factum uses industrial routing machines controlled by a combination of commercial and in-house software.
The Selene Scanner installed and operating at the imaging services department of the Bodleian Library, recording a copperplate from the Lister Collection (courtesy of INGENIA)

TECHNOLOGY TO RECREATE ARTWORKS

Gough collections, including a century etching plates from very different ways.”

With a mirrorless camera on a electronic board to work electronically. Four flashes angles and combines them under several different lighting flat or nearly flat objects such as Selene. Developed for capturing photographic system called prototype photometric stereo Recording Cultural Heritage in ARCHiOx (Analysing and Library on a project called working with the Bodleian reflections.

expecting it at all.” I’d say, we’ve actually got the human eye. It’s the first script very, very clearly. This to becomes unreadable. But with waxy surface of palm leaves also used to scan Sanskrit then to make a print from that resolution to make a 3D print of 25 µm. “Being able to record a copperplate from the Lister Collection The Selene Scanner installed and operating at the imaging services department of the Bodleian Library, recording a copperplate from the Lister Collection (courtesy of INGENIA)

TECHNOLOGY TO RECREATE ARTWORKS

The varnish would also have dissolved the pigmentary glazes that Reynolds used to make the painting. Comparing the portrait with less detracted Reynolds’ works; to determine precisely which pigments he had used, Lowe’s team digitally removed the yellowish cast from their colour scan of the painting and printed this image onto a 3D print of the wooden panel on which Reynolds had worked. Conventional restoration would have lost everything that made the painting specific, so they decided they couldn’t touch it. We were able to do more or less what a restorer would do, but without ever physically making contact with the paint surface.” Lowe believes that Factum Foundation’s techniques can even enhance understanding of a work. “There’s a whole new world of data analysis. Whether it’s based on machine learning or artificial intelligence, both are dependent on pattern recognition and number-crunching on a very large scale. I’m pretty certain that from the colour data we are recording, we will in time be able to attribute the hand of specific artists with great degrees of confidence. I’d be very surprised if we can’t record paintings by El Greco and say, ‘El Greco painted this part himself, his son Jorge Manuel painted this part, and several studio assistants painted these bits over here!” Lowe is currently working on a project to test this theory with a team from the physics, materials science, and engineering, and art history departments at Case Western Reserve University in Cleveland, Ohio (see box).”

PANORAMIC TITLE

panoramic head, which allows the flash to be positioned at the optimum angle to minimise reflections.

Factum Foundation is also working with the Bodleian Library on a project called ARCHiOx (Analysing and Recording Cultural Heritage in Oxford), which uses another new piece of equipment alongside Lucida—a prototype photometric stereo photographic system called Selene. Developed for capturing surface texture and colour of flat or nearly flat objects such as paintings, murals and sculptural bas-reliefs simultaneously, Selene captures 2D images under several different lighting angles and combines them electronically. Four flashes are synchronised using an electronic board to work with a mirrorless camera on a motorised mounting to scan documents, printing plates and other objects. “It’s rare that any major library anywhere in the world has focused on 3D recordings of their objects,” Lowe says. “People talk about the material culture of the book with great reverence. But when it comes to digitising libraries, it’s very much a case of extracting information from the books so you can have it in a digital format. We wanted to show that if you also have 3D recording, you can start to see and understand the object in very different ways.” The ARCHiOx project has recorded several 17th and 18th century etching plates from the Rawlinson, Lister and Sough collections, including a design identified as the work of William Blake, to an accuracy of 25 µm. “Being able to record an engraving with enough resolution to make a 3D print of it on an elevated printer, and then to make a print from that replica, is incredibly exciting,” Lowe said. The system was also used to scan Sanskrit manuscripts scratched onto the waxy surface of palm leaves centuries ago, with equally stunning results. He adds: “As the leaf ages and brown, it becomes unrecognizable to us. But with Selene, we could record the surface and extract the Sanskrit script very, very clearly. This to me was a real excitement.” Another part of the project involved scanning an 18th century manuscript. ‘In the margins of the borders, we recorded letters that have never been seen — inscriptions and writing that can’t be seen by the human eye. It’s the first time, I’d say, we’ve actually got a clear result where no one was expecting it at all.”

Making physical objects for Factum Arte involves both additive and subtractive techniques. “We use primarily now, what we call elevated printing, which is a 3D-printing technology based on multiple layers of UV-cured ink,” says Lowe. “It uses electric motors to attract the ink particles and the UV light hardens it in layers. Each layer is about 10 µm thick, so 10 layers get you to a millimetre. We use that to build the relief texture, but not the colour because the UV ink has a volume it doesn’t look like paint. We’ve built piezoelectric printers in-house for printing colour. So well build the volume of the brush marks with elevated printing, but we need a different character of ink to get the colour on top.”

Subtractive techniques include three- and seven-axis CNC milling, often to make moulds into which re-materialisations are cast. For the Tomb of Cardinal Taverns, moulds were made from physical stereo-lithographic prints and the monument itself cast in sections out of a marble composite. These sections were then joined together and hand-painted to replicate the patina (an aged finish that forms naturally over time) of the original.

ARTWORKS UNDERSTOOD

As well as producing re-materialisations, Factum’s techniques can be used in restoration. For example, Lowe worked on a portrait by Sir Joshua Reynolds whose varnish had yellowed badly over time, a common problem with old paintings. Usually, restorers remove yellowed varnish with a solvent to reveal the original pigments beneath. But Reynolds, a relentless experimenter, habitually tinkered with the composition of his paints to achieve illusionistic effects. The result of this was that dissolving the varnish would also have dissolved the pigmentary glazes that Reynolds used to make the painting. Comparing the portrait with less detracted Reynolds’ works; to determine precisely which pigments he had used, Lowe’s team digitally removed the yellowish cast from their colour scan of the painting and printed this image onto a 3D print of the wooden panel on which Reynolds had worked. Conventional restoration would have lost everything that made the painting specific, so they decided they couldn’t touch it. We were able to do more or less what a restorer would do, but without ever physically making contact with the paint surface.” Lowe believes that Factum Foundation’s techniques can even enhance understanding of a work. “There’s a whole new world of data analysis. Whether it’s based on machine learning or artificial intelligence, both are dependent on pattern recognition and number-crunching on a very large scale. I’m pretty certain that from the colour data we are recording, we will in time be able to attribute the hand of specific artists with great degrees of confidence. I’d be very surprised if we can’t record paintings by El Greco and say, ‘El Greco painted this part himself, his son Jorge Manuel painted this part, and several studio assistants painted these bits over here!” Lowe is currently working on a project to test this theory with a team from the physics, materials science, and engineering, and art history departments at Case Western Reserve University in Cleveland, Ohio (see box).”

A QUESTION OF ATTRIBUTION

One of the most ambitious projects at Factum Foundation is its collaboration with Case Western Reserve University (CWRU) in Cleveland, Ohio, to develop ways to use Factum’s digital recording techniques to determine a painting’s attribution. The study aims to teach artificial intelligence systems to recognise the distinctive way that artists form brushstrokes on canvas, similar to handwriting recognition. This could not only give a valuable new way for the art world to determine whether a picture is genuine or a copy, but could even determine which members of an artist’s workshop contributed to a finished work and which parts were painted by whom.

Initially, the goal of the project is to study late works by El Greco, the Crete-born artist best known for his work in 16th-century Spain. He established a workshop in Toledo where he took on students, including his son Jorge Manuel, who worked with him as assistants. El Greco often painted only the portions of his large artworks that he considered most important himself and entrusted his students to reproduce his high idiosyncratic style in the other parts of the pictures; a common practice for artists of that and other periods. It is partly for this reason that El Greco’s work is often the subject of debates about attribution.

A team from CWRU’s department of physics, materials science and engineering developed the system. Using several paintings of lilies by students from Cleveland Institute of Art, four artists created three virtual ‘patches’ to areas of the paintings to simulate how assistants might have worked on them. The analysts focused on the subtle detail that can be thought of as the dynamic movements of the bristles as they respond to each hand. In reality, the analysis is numerical and is looking at the paintings in different ways. After training the system on the ‘patches’ produced by each artist, the system successfully identified 98% of them, connecting them to other samples made by the same hand.

BIOGRAPHY

Adam Lowe is the Director of Factum Arte and Founder of Factum Foundation for Digital Technology in Preservation. He was trained in Fine Art at the Ruskin School of Drawing in Oxford and the Royal College of Art in London. He has been an adjunct professor at the M.S. in Historic Preservation at Columbia University, New York, since 2002. In 2007, Lowe became a Royal Designer for Industry, awarded by the Royal Society of Arts. He has written extensively about originality, authenticity, and preservation.