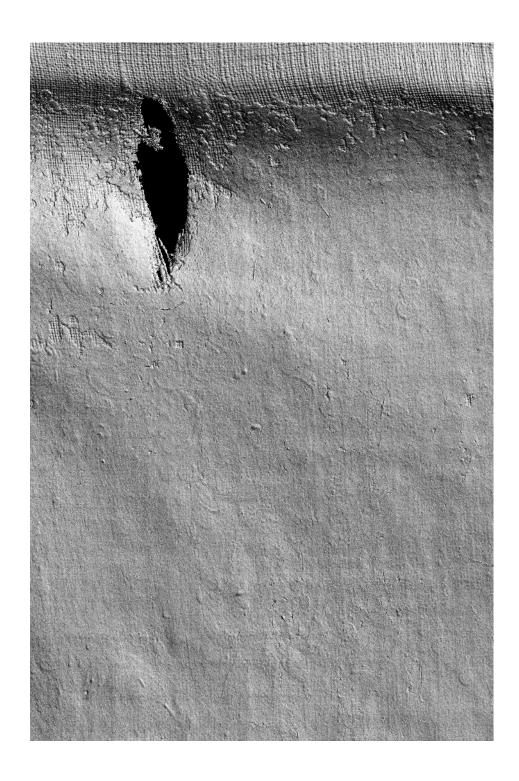

Lucida 3D Scanner

Factum Foundation

Training guide I: Assembly instructions

factumfoundation.org


Lucida 3D Scanner

Contact us

Table of contents	
Table of contents	
1	
Welcome. Let's get started	5
Specifications	6
How does it work?	7
Components	8
2	
Setting up	13
Assembly steps	14
Wiring	30
•	
3	0.0
Startup process	33
Quick start guide	34
The scanning tile	35
Positioning the scanner	36
Scanning area	38
X axis movement	40
Y axis movement	42
Z axis movement	44

Assembly instructions

47

Welcome. Let's get started

Specifications

Laser diode

Manufacturer and model: Laser Components ADL-65075TA2

Type: Auto Power Controlled Laser Diode. Stable light power output, compact

size, high brightness laser light source

Wavelength: 650 nm

Power: 5 mW

Cameras

Manufacturer and model: IDS UI-1221LE-M-GL

Type of cameras: Monochrome

Sensor: CMOS Mono by Aptina Imaging Lens: Sunex DSL-300 EFL=17.1 f/4.2

Data transmission speed: max 25 Mbytes/s per camera

Interface: USB 2.0

Resolution: 752 x 480 pixels

Microcontroller

Chip: 8-bit Atmel AVR Atmega 328

Clock speed: 16MHz Operating Voltage: 5V

Linear motion

Manufacturer and model: Haydon Kerk RGS06 Motorized hybrid linear rails &

actuators

Data features

File formats: 3D (RIS), 3D (32 bit-TIFF), 3D (16 bit-TIFF), 2D render (8-bit TIFF),

raw video (AVI)

Point resolution: 10,000 points per cm2

Megabytes per m2: RIS (420 MB), 3D depthmap 32bit-TIFF (420 MB), 2D

render 8bit-TIFF (88 MB), AVI (272 GB)

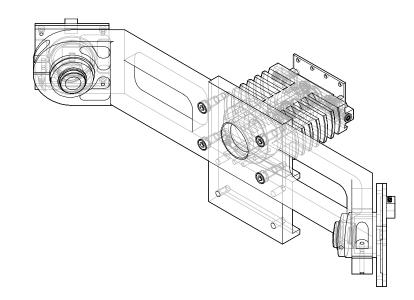
How does it work?

Lucida 3D Scanner

Designed and developed by the artist Manuel Franquelo, Lucida has been created to obtain contact-free, high-resolution 3D data out of the surface of paintings and low-relief objects.

The system projects a thin beam of red light onto the surface of the painting. As the beam moves across the object the distortions caused by the surface fluctuation are recorded by two video cameras positioned either side of the laser. The video footage is archived as raw data as well as processed as a tonal depthmap.

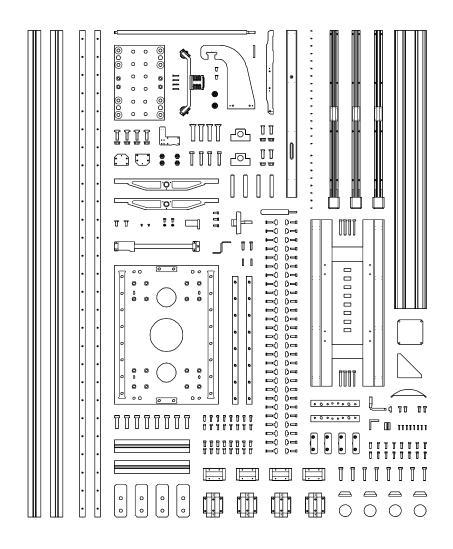
Scanning features


Depth of field: 25 mm

Maximum scanning depth using Z axis: 200 mm

Distance to the target: 65-90 mm Maximum scanning area (m2):

Only limited by storage capacity and structural frame


Scanning speed (m2/h): ca. 0.25

Welcome. Let's get started

Components

What's in the case?

For product updates, new components and accessories please visit: www.factum-arte.com

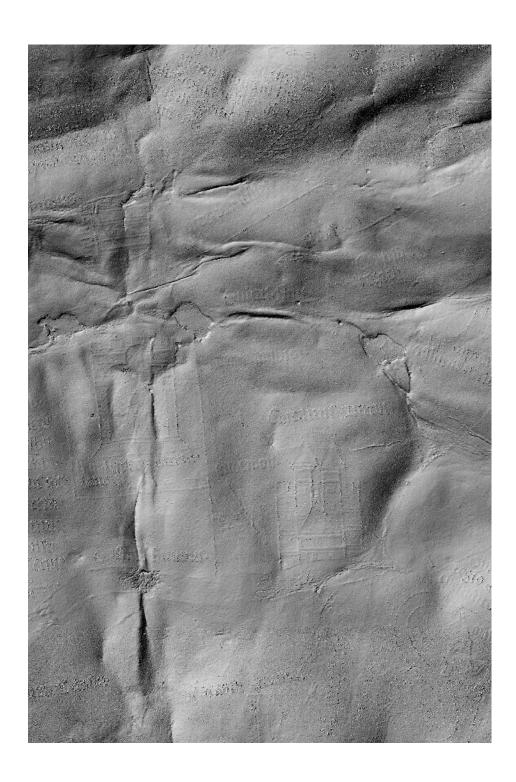
Components

Ref.	Units	Component	
01	1	Calibration arm	
02	1	Calibration stand	
03	1	Calibration dowel pin	
04	1	Calibration threaded handle	
05	1	Scanner head	
06	1	Shim plate	
07	1	Horizontal linear guide	
80	1	Horizontal channel	
09	2	Carriage connection plate	
10	2	Vertical linear guide	
11	1	Backing frame	
12	8	Stand-off	
13	4	Carriage	
14	2	Carriage plate	
15	1	Brake connecting profile	
16	1	Brake connecting plate	
17	1	Brake handle	
18	1	Tower profile 1000 mm + Profiles + Guide rods	
19	1	Tower cap	
20	1	Square	
21	1	Square cap	
22	1	Tower plate	
23	2	Beam	
24	1	Threaded plastic piece	
25	1	Lead screw	
26	2	Bearing	
27	2	Bearing mount	
28	1	Hand wheel	
29	4	Carriage	
30	2	Guide	

Welcome. Let's get started

Components

Ref.	Units	Component
31	1	Digital caliper
32	1	Digital caliper connecting plate
33	1	Base plate
34	4	Carriage
35	2	Guide 1750 mm
36	4	Profile 1750 mm
37	4	Profile 270 mm
38	4	End plate
39	4	Adjustable oot
40	4	Foot cap


Components. Accesories

Ref.	Units	Component
41	1	Controllers box and wires
42	1	Controllers AC adaptor
43	1	Power cable
44	1	USB cables set
45	1	USB extensions set
46	1	Allen keys set
47	1	Spanners set
48	1	Micro-screwdrivers set
49	1	Laptop
50	1	Laptop AC adaptor
51	1	Laptop mouse
52	1	Laptop bag
53	1	Long rectangular case
54	1	Large square case

Components. Screws and nuts

Ref.	Units	Component
Α	2	M6 x 24 Socket head cap screw
В	2	4.5 x 24 mm Cylindrical dowel pin
С	4	No 6-32 x 1/2 Socket head cap screw
D	8	M3 x 0.5 Socket head cap screw
E	2	M6 x 5 Socket countersunk head screw + nuts
F	8	No 6-32 x 1/2 Socket head cap screw
G	16	M3 x 5 Socket head cap screw
Н	8	M6 x 45 Socket head cap screw
1	2	M6 x 15 Socket head cap screw
J	2	M6 x 15 Socket head cap screw
K	4	M12 x 50 Socket countersunk head screw
L	8	M8 x 25 Bosch FS7 + Nuts
M	4	M8 x 25 Bosch FS7 + Nuts
N	4	M12 x 22 Socket countersunk head screw
0	3	M5 x 14 Socket head cap screw
Р	4	M8 x 40 Hexagonal head
Q	16	M5 x 20 Socket head cap screw
R	2	M5 x 10 Pan cross head + Nuts
S	2	M5 + Nuts
Т	2	M3 + Nuts
U	16	M5 x 20 Socket head cap screw
V	16	M6 x 15 Socket countersunk head screw
W	58	M6 x 20 Socket countersunk head screw
X	8	M8 x 40 Socket head cap screw
Υ	4	B12 x 40 Socket head cap screw
Z	4	M12 x 90 Threaded rod + Nuts

For product updates, new components and accessories please visit: www.factum-arte.com

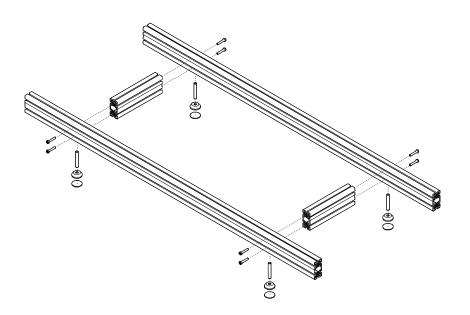
Setting up

Hereford Mappa Mundi, c. 1300, ink on vellum, 158 x 133 cm (detail).
3D scanned in 2012 in Hereford Cathedral, England.

Step 01/16

Components:

40 (4x) Foot cap

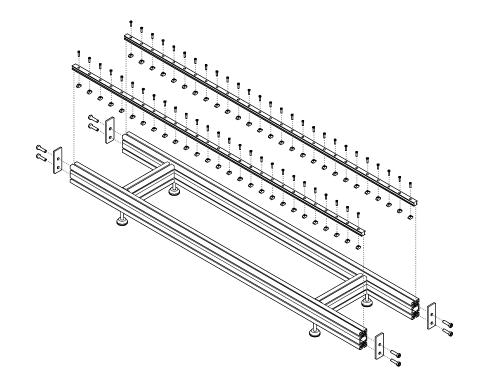

39 (4x) Adjustable foot

37 (2x) Profile 270 mm

36 (2x) Profile 1750 mm

	Z
•	4 units M12 x 80

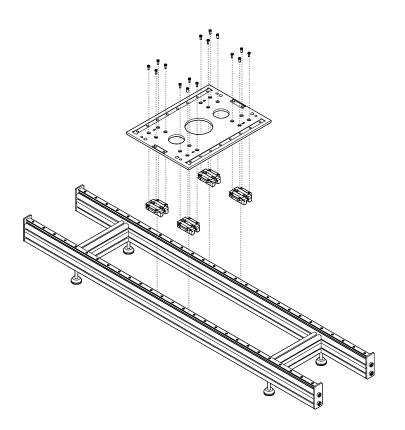
Step 02/16


Components:

38 (4x) End plate

35 (2x) Guide 1750 mm

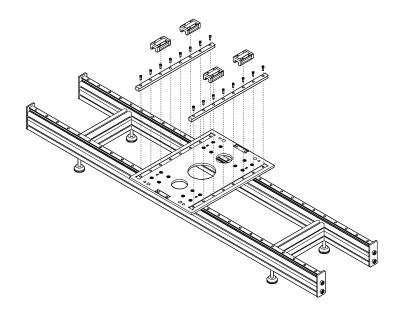
34 (4x) Carriage


Setting up

Setting up

Step 03/16
Components.

33 (1x) Base plate


Step 04/16

Components:

30 (2x) Guide

29 (4x) Carriage

Lucida 3D Scanner

Assembly instructions

Setting up

Step 05/16

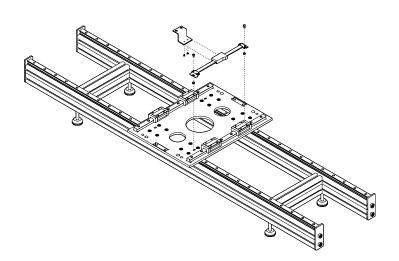
Setting up

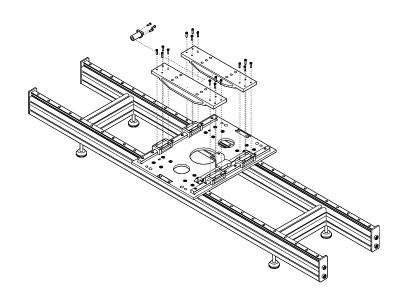
Components:

32 (1x) Digital caliper connecting plate

33 (1x) Digital caliper

	S
(1)	2 units M3 x 5


Components:


24 (1x) Threaded plastic piece

23 (2x) Beam

Q
4 units M5 x 20

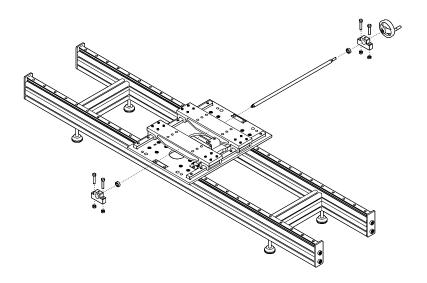
K

4 units M12 x 50

(a)

Step 07/16

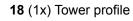
Components:

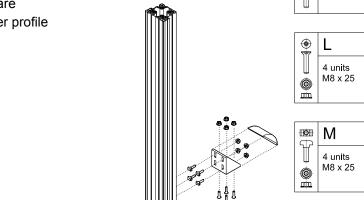

28 (1x) Handwheel

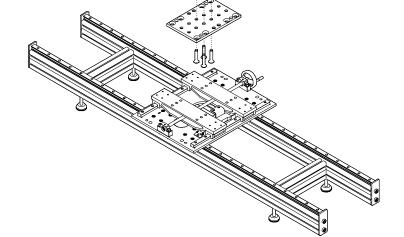
27 (2x) Bearing mount

26 (2x) Bearing

25 (1x) Leadscrew


Step 08/16


Components:


22 (1x) Tower plate

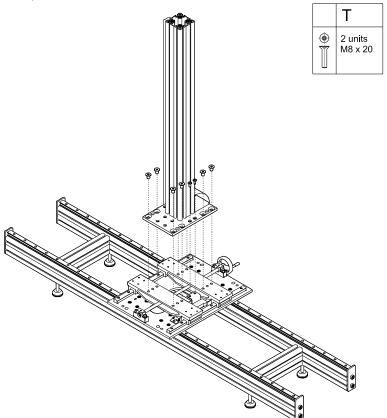
21 (1x) Square cap

20 (1x) Square

22

Step 09/16

Components:

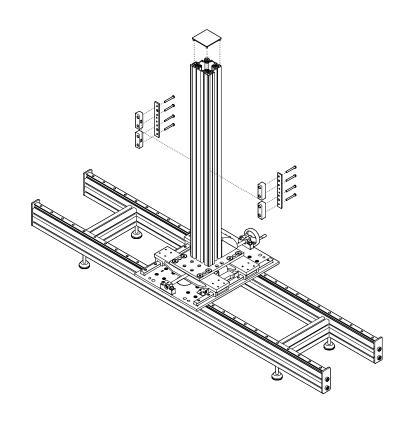

22 (1x) Tower plate

21 (1x) Square cap

20 (1x) Square

18 (1x) Tower profile

Step 10/16


Components:

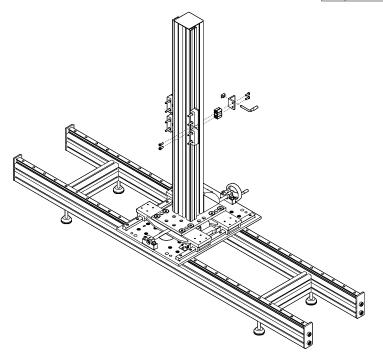
19 (1x) Tower cap

14 (2x) Carriage plate

13 (4x) Carriage

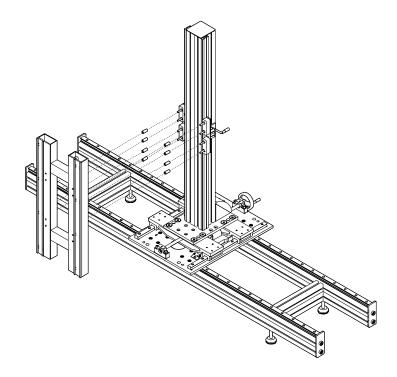
Step 11/16

Components:


17 (1x) Break handle

16 (1x) Break connecting plate

15 (1x) Break connecting profile



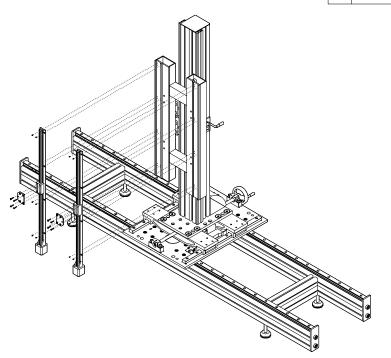
Step 12/16

Components:

12 (8x) Stand-off

11 (1x) Backing frame

Step 13/16


Components:

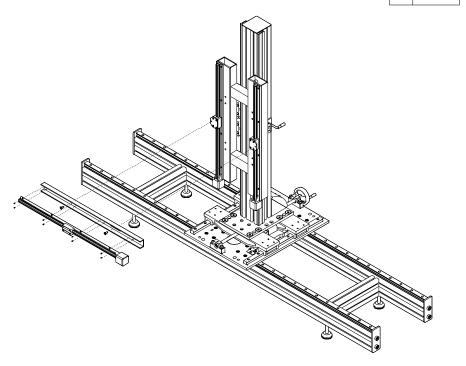
10 (2x) Vertical linear guide

09 (2x) Carriage connection plate

F
8 units No 6-32

G
16 units M3 x 5

Step 14/16

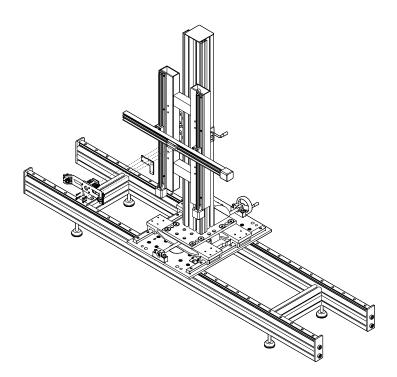

Components:

08 (1x) Horizontal channel

07 (1x) Horizontal linear guide

	ш
*	2 units M6 x 5

Step 15/16


Setting up

Components:


06 (1x) Shim plate

05 (1x) Scanner head

Step 16/16

Setting up

Wiring

- 01. Connect the vertical slide motors, connections are interchangeable
- 02. Connect the horizontal slide motor

- 03. Connect the USB cable to Camera 1, note the orientation
- 04. Connect the USB cable to Camera 2

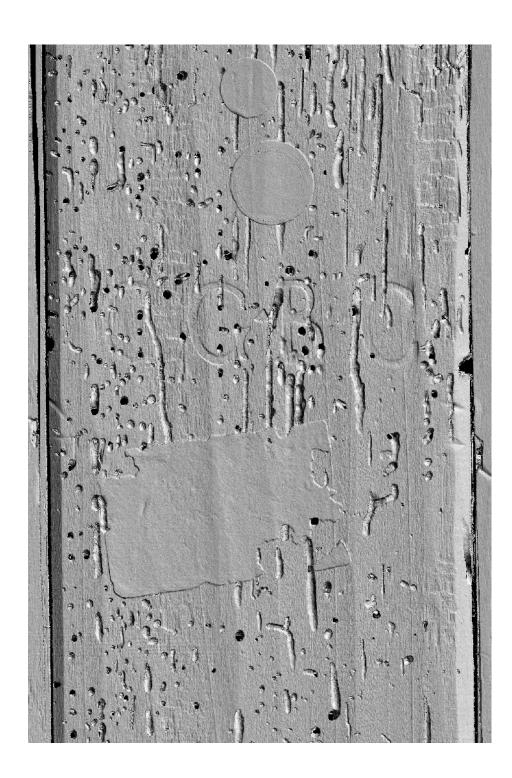
- 05. Connect the ribbon cable to the PCB on top of the scanner head
- 06. Plug in the AC transformer, do not connect it to the control box yet

- 07. Make sure the power switch is turned off
- 08. Connect the control box to the AC transformer

Wiring

- 09. Connect the USB cables of the cameras to the extensions
- 10. Connect the ribbon cable to the PCB of the control box

- 11. Connect the USB cable to the Arduino Proto Shield
- 12. Connect one camera USB cable to one of the USB 2 ports



- 13. Connect the other camera USB cable to one of the USB 3 ports
- 14. Connect the Arduino USB cable to another USB 3 port

- 15. Connect the mouse to the free USB-SATA port
- 16. Switch power on, the drivers' status LED will turn green

3 Startup process

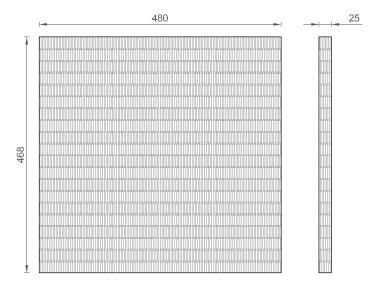
<<<

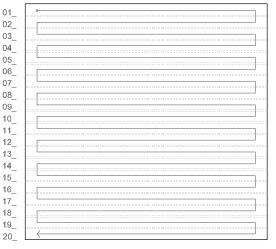
Ercole de' Roberti, *San Giorgio (Polittico Griffoni)*, 1472-1473, tempera on poplar, 26.3 x 9.3 cm (detail of the back). 3D scanned in 2012 in Fondazione Giorgio Cini, Venice.

Startup process

Quick start guide

https://vimeo.com/8261186

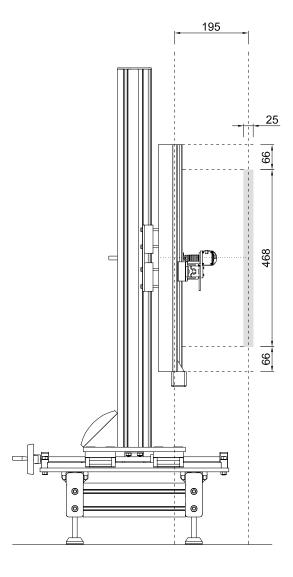

password: factum53

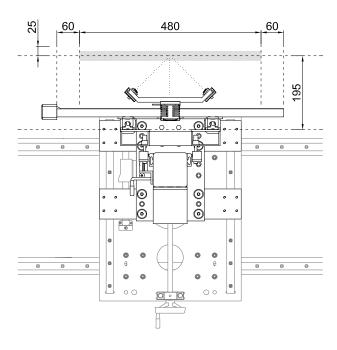

See this video for a step-by-step tutorial covering these areas:

Positioning; Wiring; The Scanning Application; Configuring Arduino's COM Port; How to attach the calibration tool; Calibration; Planning a New Session; New Session.

The scanning tile

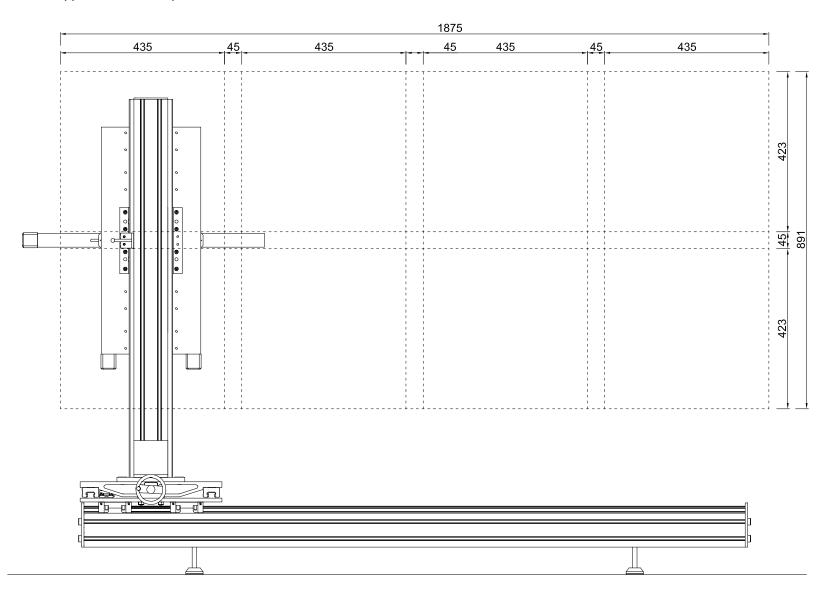
The scanning tile consists of a standard area of data composed of 20 horizontal stripes 26 mm wide with a merged overlap of 10%.




Startup process

Positioning the scanner

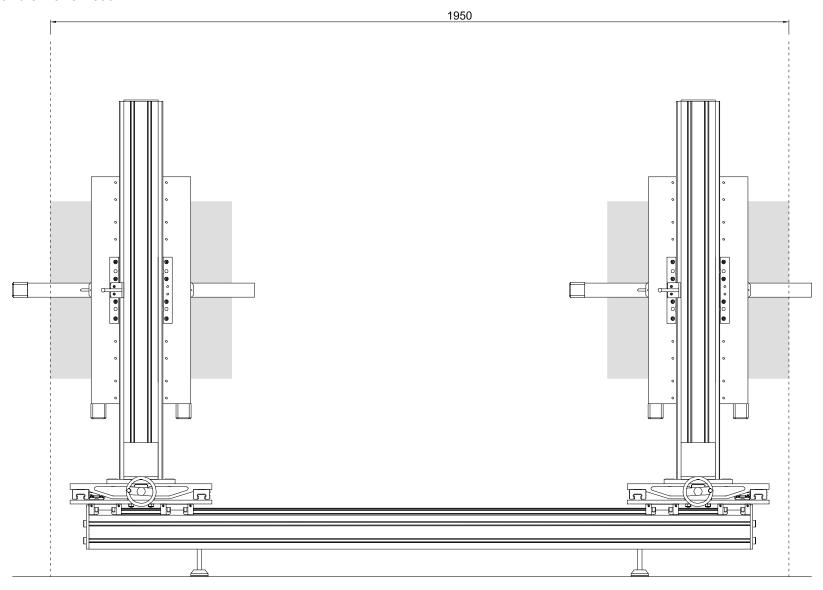
Distance to the target, from the front of the backing frame to the center of the depth of field: 195 mm.



Lucida 3D Scanner Startup process

Scanning area

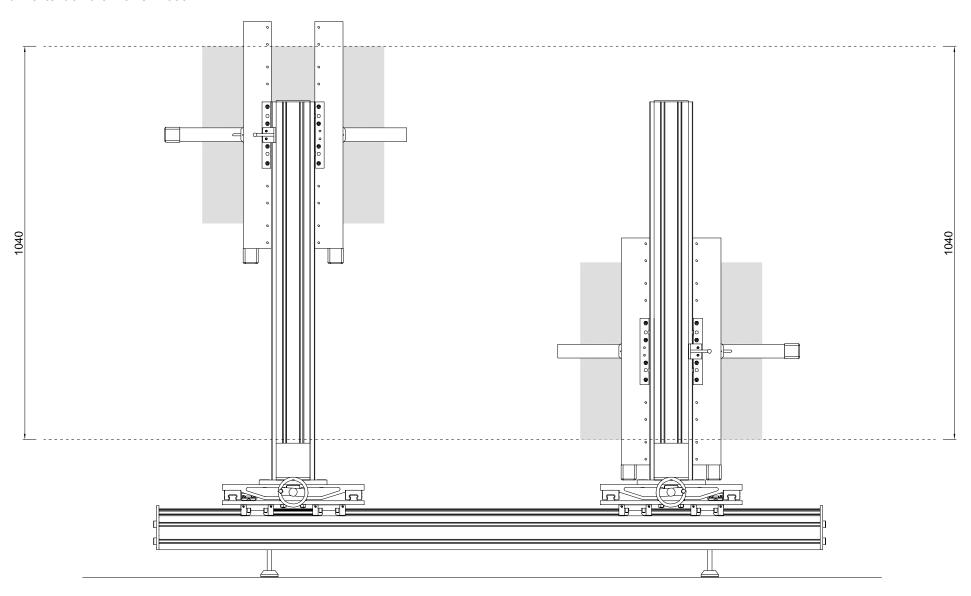
8 full scanning tiles with an approx. 10% overlap: 891 x 1875 mm.



Startup process 40 Startup process

Assembly instructions

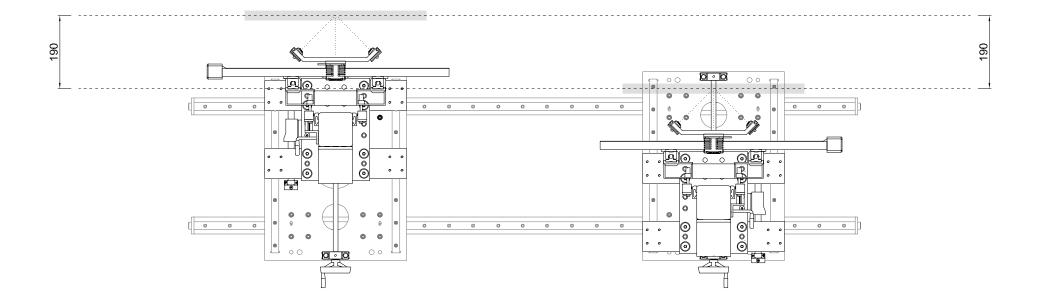
X axis movement


Maximum extent on the X axis: 1950 mm.

Startup process 42 Startup process 4

Y axis movement

Maximum extent on the Y axis: 1050 mm.



Startup process 44 Startup process 4

Assembly instructions

Z axis movement

Maximum extent on the Z axis: 200 mm.

Contact us

Support

factum@factum-arte.com

If you ever need help with your Lucida, email the address above. To help us understand the problem it is very helpful to include pictures or a video as attachments with your email.

You can also telephone us: +34 915 500 978

Feedback

factum@factum-arte.com

For general questions or for your comments and ideas send an email to the address above.

For more information

www.factum-arte.com www.factumfoundation.org

Resources

Lucida user's manuals can be downloaded from Factum Arte's website:

Assembly Instructions

factum-arte.com/lib/kcfinder/upload/files/Lucida/manuals/2015_Lucida_A5_Assembly_Final.pdf https://vimeo.com/8261186 (password: factum53)

Operator's manual

factum-arte.com/lib/kcfinder/upload/files/Lucida/manuals/2015_Lucida_A5_Operator_Final.pdf

Processing applications

factum-arte.com/lib/kcfinder/upload/files/Lucida/manuals/2017_Lucida_A5_processing_Final.pdf

LucidaLab Madrid

Factum Arte & Factum Foundation c/ Albarracín, 28 28037 Madrid factum@factum-arte.com carlos@factum-arte.com tel. +34 915 500 978

LucidaLab London

Factum Foundation
44 Lexington Street
London W1F 0LP
info@factumfoundation.org
eva.rosenthal@factumfoundation.org
tel. +44 20 7439 8287

LucidaLab Milano

Factum Foundation
Via Piranesi, 10
20137 Milano
info@factumfoundation.org
guendalina@factumfoundation.org
tel. +39 02 36736436

factumfoundation.org factum-arte.com

